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Abstract: A general method of automatically reducing NMR spectra to provide numerical descriptors of samples has been 
developed and investigated. These descriptors can be used as input to pattern recognition or multivariate algorithms for 
sample classification. The methods have been tested using 600 MHz one-dimensional ‘H NMR spectra of biofluids which 
are complex mixtures. The approach is, in principle, applicable to multidimensional and heteronuclear NMR spectra and 
to other types of liquid samples such as oils and foodstuffs as well as to situations such as ‘H or 31P NMR in vivo and solid 
state NMR in drug formulation analysis. The method relies upon apportioning the information in the spectra to individual 
contiguous segments and allowing specified regions of the spectra to be omitted. Three approaches, based on the number 
of peaks, the summed peak heights and the summed peak areas respectively in each segment, have been tested. The effect 
of segment width and overlap and the effects of manipulation of the NMR spectra have been evaluated in terms of the 
classification of the samples using principal components analysis. A simple method of generating NMR based spectral 
descriptors for object classification is thus proposed. 
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Introduction 

In general there are two principal approaches 
in analytical chemistry for deciding whether a 
particular sample belongs to a given class [ 11. It 
may be possible to make a determination of a 
single parameter with sufficient precision to be 
able to assign the sample to a particular class 
based on statistical significance. An example of 
this type of analysis could be the determination 
of the level of glucose in blood or urine as an 
indicator of diabetes. This approach requires 
an a priori selection of the analyte and relies 
upon a specific and proven hypothesis of the 
relationship between the analyte and the 
sample classification. Alternatively, it is poss- 
ible to choose a series of analytes in the 
sample, and based upon multivariate statistics, 
the determined values of these analytes can 
then be used to assign the sample to a class. 
This method also relies on the preselection of 

analytes for study and the requirement that 
they are known to be the most significant for 
distinguishing the sample classes and there are 
many such examples of this type of analysis in 
clinical biochemistry and disease diagnosis [2]. 

Some modern analytical techniques allow 
the simultaneous determination of many 
descriptors of the sample without the need for 
preselection of the analytes. This allows the 
analyst to accept all the detectable data relat- 
ing to the sample and provides the opportunity 
to determine which amongst the possible 
myriad of parameters are those which are 
significant in distinguishing sample classes. It 
may be that new and previously undiscovered 
markers of the sample classes will result from 
this approach. This mode of operation relies 
upon the presence of a ‘training set’ of samples 
with independently known classification so that 
significance testing of the novel descriptors can 
then be carried out. 
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Foremost among such analytical measure- 
ment methods must be high resolution NMR 
spectroscopy. This has the potential for simul- 
taneous determination of many independent 
parameters in a complex mixture with the 
added advantage that relative signal intensities 
(if the experiment is suitably conducted) are 
directly proportional to concentrations of the 
species in the sample. One particular area 
where complex NMR spectra occur is the study 
of ‘H NMR spectra of biofluids such as urine 
where often thousands of resonances result 
from the presence of both endogenous bio- 
chemicals and drug metabolites [3-81. Disease 
[9], physiological changes [lo, 111 or toxic 
processes [12] can cause marked changes in the 
levels of endogenous metabolites and in severe 
cases, for example in the case of in-born errors 
of metabolism [ 131, completely new substances 
can be present. Under these circumstances, it 
is unnecessarily censorious to preselect meta- 
bolites for study, although such analysis of 
biofluids using NMR spectroscopy has been 
extremely successful in studying toxicity, drug 
metabolism and disease processes [3]. A study 
has, therefore, been made of methods to ensure 
that as comprehensive a set of descriptors as 
possible is collected in an automatic fashion 
such that multivariate analysis of the data can 
follow. This follows some preliminary work by 
us which has been reported previously [14]. 

Multivariate methods have been applied in a 
number of NMR-based studies. For example, 
in order to improve NMR spectral assign- 
ments, principal components (PC) analysis and 
cluster analysis have been used for recognition 
of resonances in 2-dimensional (2D) NMR 
spectra [15] and neural networks have helped 
the identification of antiphase cross-peaks in 
2D NMR spectra [16]. A neural network 
approach has also been used to identify NMR 
spectra from sugars in oligosaccharides [17] 
and from sugar alditols [18]. Other computer- 
aided studies include the assignment of i3C-iH 
and ‘H-‘H correlation spectra [19]. The 
optimum features of 2D NMR spectra which 
can be used for classifying residues in per- 
acetylated oligosaccharides using PC analysis 
and SIMCA [20] have been elucidated [21]. 
The use of a variety of multivariate methods 
based on PC analysis has been reported in 
order to predict NMR parameters, to relate 
chemical shifts to biological significance and to 
reduce noise and spectral artefacts [22]. Much 
work has been carried out on predicting 13C 

chemical shifts using such multivariate 
methods [23] including more recently, the 
investigation of the usefulness of neural 
networks [24]. 

However, one potentially important area of 
the use of multivariate methods for classifi- 
cation is to use NMR data as descriptors of a 
biological condition, for example, disease or 
toxic stress. Some studies have reported moni- 
toring the growth of tumours using NMR of 
blood serum [25] and distinguishing various 
types of tumour using the ‘H NMR spectra of 
extracts 126, 271. In addition, attempts have 
been made to classify disease states from in 

vivo spectra using factor or PC analysis. In 
particular, a study has been made of 3’P NMR 
spectra from muscle myopathy patients [28] 
and of localized ‘H NMR spectra in neuro- 
logical diseases [29]. 

Significant efforts have been made to classify 
‘H NMR spectra of rat urine in terms of toxic 
insult [30, 311 where it was possible to dis- 
tinguish the organ containing the toxic lesion, 
for example kidney, liver or testis, and within 
the kidney to identify toxins which affected 
different parts of the kidney, for example the 
cortex or medulla. Moreover, it was also 
possible to distinguish different biochemical 
mechanisms of toxicity within the kidney using 
PC methods [32]. A comparison has also been 
made of the relative usefulness of using ‘H 
NMR or conventional clinical chemistry tests 
for classifying the toxic nature of xenobiotics 
[33]. As well as distinguishing different types of 
toxicity, it has been shown that PC analysis is 
useful for demonstrating the time course of 
toxic effects and that trajectories in PC maps 
can be used to distinguish different types of 
kidney toxicity [34, 351. 

The basic principle behind our earlier work 
on automatic data reduction was that in a 
complex mixture containing species that may 
be absent or undetectable in some abnormal 
situations, simply to carry out a ‘peak-picking’ 
exercise would be misleading in that the nth 
descriptor would not always correspond to the 
same biochemical marker. Hence in the earlier 
study, the ‘H NMR spectrum was reduced by 
carrying out a peak frequency and intensity 
listing of the spectrum, dividing the spectrum 
into regions of defined width (e.g. 0.05 ppm) 
and summing the peak heights in each region 
to obtain a series of numerical descriptors 
equally spaced along the NMR frequency axis. 
The validity of this approach was checked by 
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making a comparison with a more conventional 
manual measurement of the heights of peaks 
corresponding to 26 known metabolites [14]. 

This automatic approach has now been 
extended by considering alternative descriptors 
for such a segment analysis and by allowing 
regions of the spectra to be automatically 
excluded to avoid artefacts introduced by 
solvent suppression or drug meta~lite reson- 
ances when seeking endogenous metabolite 
information. In addition, a study has been 
made of the effects of changing the segment 
chemical shift width, of allowing overlap of the 
segment regions and of changing spectral line- 
broadening parameters, on the ability to 
classify samples. Finally, the level of error 
introduced by manual phasing of the spectra 
has been investigated. 

Experimental 

Samples of rat urine were obtained from 
animals as part of on-going toxicological 
studies. Human urine samples were taken from 
healthy volunteers under different types of 
mild physiological stress who were being 
studied as part of an independent examination 
of the use of NMR spectroscopy to investigate 
normal human physiological variation. ‘H 
NMR spectra were measured at 600 MHz on a 
Bruker AMX600 instrument using water 
resonance presaturation. Chemical shifts were 
referenced relative to internal sodium tri- 
methylsilyl[2,2,3,3,-*H~]propionate (TSP) at 
60.0. Detailed reports of the NMR spectro- 
scopy and the pattern recognition results of 
these studies will be given separately. The 
NMR free induction ,decays were processed 
using the s~ctrometer operating and process- 
ing software UXNMR. To construct segment 
regions and hence to obtain spectrum descrip- 
tors, three approaches were used. In one case, 
the NMR spectra were reduced to a list of 
resonance frequencies and heights using the 
standard peak-picking routine and these lists 
were stored in ASCII files. Using routines 
written in the processing language of the table 
manipulation package RSll [36], these inten- 
sities were summed in discrete frequency bands 
(segments). This program also provided 
definition of the spectra in terms of the number 
of segment regions, allowed areas of the 
spectra to be excluded and provided for over- 
lap of segment regions. AIternatively, similar 
software was written for the Bruker X32 

computer for converting the NMR spectrum 
directly into descriptors and this allowed two 
further types of descriptor to be used (total 
integrated intensity in a defined region or 
number of peaks detected in a defined region). 
In each case the output of the analysis was 
subsequently manipulated using the same table 
generation and graph plotting software RS/l 
[36] running on a DEC-VAX cluster. Pattern 
recognition and mapping methods were carried 
out using the program ARTHUR [37] on a 
VAX cluster. Data communication between 
computers was by TCP/IP. Significance testing 
and other statistical methods used Fisher 
weights and Student’s t-tests. 

Mapping of the samples was achieved using 
principal components (PC) analysis, a well- 
known multivariate exploratory data analysis 
technique. PC analysis [1] is a method which as 
well as devising the most informative descrip- 
tors in a data set irrespective of data classifi- 
cation, can also be used for dimension 
reduction. The PCs are eigenvectors from 
diagonalization of the covariance matrix 0, X 

p) of the n x p data matrix (based upon p 
descriptors for each of it samples). The first PC 
is a linear combination of the original p 
descriptors with appropriate weighting coef- 
ficients and contains the maximum variance in 
the data. The second PC is another linear 
combination of variables, orthogonal to the 
first and contains the next most complete 
description of the data. Successive PCs will, 
therefore, explain less and less of the data 
variance and at some point will consist of only 
the data noise. For a set of p descriptors there 
are p PCs but clearly plotting the sample 
coordinates for the first two PCs (a so-called 
scores plot) will provide the maximum infor- 
mation content of the data in two dimensions. 
Three-dimensional PC stereo-plots can also be 
useful in complicated data sets [31]. In this 
mode of exploratory analysis, no a priori 
assumptions are made about the samples and 
the sample classes are marked on the maps to 
investigate whether the descriptors are capable 
of distinguishing the classes. One advantage of 
PC analysis is that it is possible to determine 
how much each of the original descriptors 
contribute to the various PCs and hence which 
are important in explaining any sample group- 
ings seen in the plot. 

Results 

An evaluation of the effectiveness of the 
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various methods of segmenting NMR spectra 
has been carried out, including a study of the 
effects of varying NMR processing and 
segment data reduction parameters. A set of 15 
600 MHz ‘H NMR spectra of rat urine were 
used to test the software. These consisted of 
five control samples, five from animals which 
had received a single dose of an experimental 
nephrotoxic compound at dose 1 and five 
which had received an increased dose of the 
same compound, dose 2. Earlier work has 
shown that the controls can be separated from 

the drug treated animals using the levels of 26 
predefined metabolites visible in the urine by 
NMR spectroscopy [ 141. 

Figure 1 shows typical spectra for the control 
and drug treated classes of sample, indicating 
the level of difference in the spectra, together 
with a typical segment output based on inte- 
grated intensity in each segment. Differences 
between the spectra shown in Fig. l(a) and (b) 
can be ascribed mainly to the effect of the 
dosed toxic substance and details of that 
toxicological study will be reported separately. 

8 6 4 2 

wm 

10 9 8 7 6 5 4 3 2 1 0 

ppm 

Figure 1 
600 MHz ‘H NMR spectra of typical (a) control rat urine, (b) rat urine after dosing with a kidney toxin at dose 2, (c) 
summed peak integral distribution corresponding to (b) based on defined spectral segments. 
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NMR descriptors for this data set have now 
been generated using the procedures given 
above. The region of the spectrum between 
65.0 and 4.5 has been excluded from the 
analysis because it contains the distorted, 
suppressed water resonance. If a 0.05 ppm 
segment is chosen covering a range from 
810.025 to -0.125, this results in 203 descrip- 
tors for each spectrum with TSP in the middle 
of a segment. Three different types of NMR 
descriptor have been investigated. These are 
with the segment value defined as (a) the 
number of peaks in the segment, (b) the total 
integrated area in the segment and (c) the 
summed peak heights in the segment. In (b) 
and (c) in the present study, the values were 
scaled to the corresponding value for the 
reference compound TSP (60.0) as a fixed 
amount of this was added to each sample. 
Therefore, segment values in (b) will be 
directly related to metabolite concentrations. 
In other applications, it is possible to conceive 
situations where other types of data scaling 
would be more appropriate, for example, 
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scaling to the total summed integral over all 
segments where effects of dilution need to be 
eliminated. 

Preliminary investigations have shown that, 
in this data set, no sample classification is 
apparent using descriptors based on the 
number of peaks in each segment. This is not 
unexpected for this data set as there is no a 
priori reason why the number of peaks in a 
given segment should correlate with the toxin 
effects on biochemistry. In other applications 
such as in ima~ng or chromato~aphy, the 
number of objects within a segment may be 
diagnostic. However, classification was poss- 
ible using either of the other two approaches, 
namely integrated intensities and peak heights. 

Figure 2 shows a plot of the first two 
principal components for the 15 samples using 
a 0.05 ppm segment based on integrated 
intensities and with various exponential 
weighting factors applied to the NMR data 
before Fourier transformation. It should be 
borne in mind that it is not necessarily the high- 
est variance PCs which will show discrimination 

PC 1 

J&----q 
0 

I I I I I 
-4 -2 0 2 4 

PC 1 

Figure 2 
Plot of the first two principal components for the rat urine samples with automatic descriptor generation based on 
segment intep;rals. Segment regions of 0.05 ppm and with (a) no line broadening; (b) 5.0 Hz line broadening; (c) 25.0 Hz 
line broadening; and (d) 60.0 Hz line broadening. Key: Cl - control urine, 0 - dose 1 urine, A - dose 2 urine. 



1220 M. SPRAUL et al. 

between classes, but given that SO-89% of the 
data variance is contained in the first two PCs 
in all of the test cases studied, the other PCs 
are largely modelling the noise in the data and 
will be less discriminating. In fact, for the test 
cases, three-dimensional maps based on the 
first three PCs did not improve the classifi- 
cation. The axis values of the PC plots depend 
on the number and range of the descriptors 
used and it is only the relative position of the 
points (each representing one NMR spectrum) 
which need to be considered. For zero line- 
broadening (Fig. 2a), the controls appear as a 
tight cluster, which also contains one sample 
from the dose 2 group. The urines from the 
drug treated animals, whether from dose 1 or 
dose 2, are intermixed on the map. Modest 
increases in the applied line-broadening of 5 
Hz have little effect on the clustering apart 
from inverting PC2 (Fig. 2b). When the line- 
broadening factor approaches the segment 
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width, the separation of the control group from 
the drug treated groups is improved (Fig. 2c, 
line-broadening 25 Hz, segment width 30 Hz) 
and increasing the line-broadening further has 
a negligible effect on the class separation - - 
(Fig. 2d). 

A second manipulation of the data which 
could affect the segmented output is the need 
to phase an NMR spectrum to pure absorption 
mode. This has been investigated by manually 
rephasing a given spectrum five times during a 
working day, carrying out a segment analysis 
and measuring the standard error on the 
segment integrals. In regions where only noise 
exists (these regions are usually subsequently 
removed in the analysis) the error is of the 
order of 25%, but for segments containing 
resonances, the variation in the measurement 
due to manual phasing is about 1% of the total 
segment integral. 

The effect of varying the segment width was 
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Figure 3 
Plot of the first two principal components for the rat urine samples with automatic descriptor generation based on 
segment integrals. Line broadening of 1.0 Hz and with various segment region widths: (a) 0.025 ppm; (b) 0.1 ppm; (c) 0.2 
ppm; and (d) 0.5 ppm. Key as for Fig. 2. 
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also investigated using the test set of spectra 
with a fixed line-broadening of 1 Hz. Figure 3 
shows the result of this evaluation. The 
absolute PC axis values vary because the 
number of descriptors is now very different in 
each case. Figure 3(a) indicates the result of 
using a 0.025 ppm segment. The use of a 0.05 
ppm segment (not shown), a 0.1 ppm (Fig. 3b) 
and a 0.2 ppm segment width (Fig. 3c, PC2 
now inverted) also gave very similar results. 
Extension to a 0.5 ppm segment gave an 
improved separation of the control group as 
shown in Fig. 3(d), although one of the 
samples from the dose 2 group still appeared in 
the control region of the map. 

A facility was built into the software to 
investigate the effect of allowing the segments 
to overlap. For a 0.05 ppm segment and a line- 
broadening of 1 Hz, allowing the segments to 
overlap by up to 20% had no effect on the 
maps. This overlap process can be thought of 
as increasing inter-parameter correlation and it 
is therefore not surprising that PC analysis, a 
decorrelation technique, is insensitive to this 
type of data reduction. Other multivariate 
analysis methods, particularly supervised tech- 
niques, may be highly sensitive to correlated 
data. 

An estimate has been made of the class 
separation which can be effected by the use of 
a very coarse segment resolution. In this case, 
a 0.5 ppm segment with an exponential FID 
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Figure 4 
Plot of the first two principal components for the rat urine 
samples with automatic descriptor generation based on 
segment integrals. Line broadening of 60.0 Hz, segment 
region width of 0.5 ppm. Key as for Fig. 2. 

weighting equivalent to a 60 H_z line-broaden- 
ing gave the PC plot shown in Fig. 4, with good 
separation of the control group of samples 
including separation of the sample from the 
dose 2 group not achieved in Fig. 3(d). 

The third approach of using summed peak 
heights is illustrated in Fig. 5. In this case, each 
segment region contains the summed heights of 
all peaks detected above a threshold equal to 
three times the peak-peak noise level. Figure 5 
shows the effect of varying the segment width 
on the classification and the results can be 
compared with those given in Figs 3 and 4. As 
can be seen, the peak height method also yields 
similar classification results to using integrals 
within a segment. For example, comparison of 
the maps produced by the integral and peak 
heights approaches for a segment width of 0.2 
ppm is given in Fig. 3(c) and Fig. 5(c), 
respectively. The info~ation content of the 
first two PCs is very similar, in that one of the 
dose 2 samples is grouped within the control 
samples in both cases, and the relative dis- 
position of the other dose 1 and dose 2 samples 
is also very similar, with the control group 
showing a tighter clustering in the peak height 
derived map, The results of using other 
segment widths are also comparable (Figs 3 
and 5). 

An illustration of the application of the 
automatic method of generating descriptors is 
shown in Fig. 6 using integrated areas. Each 
point on these plots involving the first three 
principal components corresponds to the 600 
MHz ‘H NMR spectrum of a human urine 
sample. A cluster of samples from normal 
individuals is seen and a number of separate 
groups arising from samples taken from 
patients with a variety of inborn errors of 
metabolism can be seen. None of the inborn 
error of metabolism samples overlaps with the 
normal group using three dimensions and the 
various types of inborn error appear in differ- 
ent parts of the map. The use of the first three 
PCs was necessary in this case to achieve full 
class separation (the data variance explained 
by the PCs being 61% (first PC), 79% (first 
two PCs) and 85% (first three PCs)). The 
normal samples were taken from a study of 
normal physiological variance and the inborn 
error of metabolism samples constitute part of 
a larger study using NMR of urine on this 
subject. Both topics will be reported separately 
together with the details of the pattern recog- 
nition optmization approaches used. 
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Figure 5 
Plot of the first two principal components for the rat urine samples with automatic descriptor generation based on 
segment summed peak heights. Line broadening of 1.0 Hz and with various segment region widths: (a) 0.025 ppm; (b) 0.1 
ppm; (c) 0.2 ppm; and (d) 0.5 ppm. Key as for Fig. 2. 
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Figure 6 
Illustration of the discriminating power of automatically generated NMR descriptors on human urine samples. Plot of the 
first three principal components for the samples with automatic descriptor generation based on segment integrals, (a) 
PC2 vs PC1 and (b) PC2 vs PC3. Key: 0 - normal, 0 - cystinuria, A -porphyria, n - Soxoprolinuria, 7 - Fanconi 
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Discussion and Conclusions 

Individual resolved peaks in an NMR spec- 
trum reflect resonances of chemically distinct 
nuclei and the peak areas can be related to the 
concentration of the respective atom types and 
hence compound if the resonances can be 
assigned. However, in a typical complex bio- 
fluid NMR spectrum, even if measured at the 
highest possible field strength, there are many 
signals which are only partially resolved and 
others which only appear or disappear in 
certain pathological conditions. In such cir- 
cumstances, the extraction of parameters 
which reproducibly represent the spectra is far 
from ideal. 

One approach which retains the character- 
istics of a peak area is to integrate signals over 
adjacent chemical shift windows of equal 
width. No signals are lost but the resulting 
integrals will represent the sum of all signals 
and parts of signals within the window boun- 
daries. If the window width is narrower than a 
resolved peak, then all peaks will occupy more 
than one window, and if the window width is 
comparable to the peak width, then any 
window may contain one peak or part of a peak 
plus parts of additional peaks where there is 
peak overlap. 

Another approach is to record peak heights. 
In a group of partially resolved signals, the 
peak height for a dominant signal will be fairly 
well preserved, but smaller signals in the wings 
of the major peak may fail to be picked out as 
peaks, and will not be represented. In order to 
enable corresponding peaks in different 
spectra to be perceived as related (bearing in 
mind small possible differences in the associ- 
ated chemical shift values between samples, 
the absence of peaks in some cases or the 
appearance of new species in other cases), an 
equivalencing procedure is needed, such as the 
assignment of each peak to one of a series of 
adjacent chemical shift windows together with 
the summing of the peak heights within 
each window, thus providing a set of win- 
dowed peak height sums across all spectra 
which may provide a data matrix for pattern 
analysis. 

These two approaches have been investi- 
gated here. More sophisticated methods can be 
conceived, such as the use of maximum 
entropy deconvolution or artificial intelligence 
peak equivalencing methods, but they would 
seem less readily suited to automation, or they 

would need a more fundamental degree of 
development and evaluation. 

The approaches described in this work have 
been demonstrated to yield a robust and rapid 
method for generating descriptors from rH 
NMR spectra which can be used as input to 
pattern recognition routines for sample classi- 
fication. The method relies on altered concen- 
trations of individual metabolites and it might 
be argued that concentration-dependent 
chemical shifts would mean that a given 
metabolite could appear in different segments 
in different samples. Whilst this is possible, 
the observed concentration dependence of 
chemical shifts in such complex mixtures 
is negligible. On the other hand, many meta- 
bolite chemical shifts are pH dependent and a 
spread in pH over a sample set could cause 
ambiguity in that the exact segment location of 
a given metabolite could be variable and 
might indicate the need for controlled sample 
pH. However, one benefit of the use of the 
current approach is that the segment width can 
be chosen to ensure generally that any 
expected pH-dependent chemical shifts are 
encompassed within the segment width. The 
application of the automatic data reduction 
approach may have widespread application for 
the automatic analysis of complex mixtures in 
diverse fields such as biofluids, wines, juices 
and any complex liquid mixture. The method- 
ology could also be adapted for solid state 
NMR or in vivo NMR or to other forms of 
spectroscopy. In addition, in principle it can be 
applied to heteronuclear NMR spectroscopy 
and can be adapted to two-dimensional and 
multi-dimensional experiments, and in par- 
ticular should be useful for sample class sep- 
aration based upon heteronuclear inverse ‘H- 
13C NMR correlation spectra. 

Three types of automatic descriptor have 
been tested, comprising segment values based 
on the number of peaks within a given region, 
total summed peak heights within a region and 
total summed integrals within a region. For the 
test data set, no classification was observed 
when peak numbers were used as descriptors. 
Good classification was possible using either 
summed peak heights derived from a peak-pick 
file or by using integrals in a spectral region. 
The use of integrals provides a general 
approach which will be applicable in many 
applications but which is likely to be suscept- 
ible to baseline distortions unless effective 
baseline corrections are carried out. On the 
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other hand the use of peak height data derived 
from a prior peak-picking exercise does not 
suffer so much from baseline problems and 
allows easy referral back to the spectrum to 
identify those NMR peaks and hence, in the 
present case, endogenous biochemicals which 
are responsible for the class separation. This’ 
could be achieved through the application of 
supervised learning methods where the sample 
class is input to the algorithm in such 
approaches as SIMCA [20]. 

The high-field high-resolution NMR spectra 
of complex mixtures are in general too rich in 
information content for a full interpretation of 
the features by eye, thus providing for the 
chance that important classification infor- 
mation may be missed in a trivial selective 
approach. In addition, manual data reduction 
is very time consuming, is open to the possi- 
bility of bias and peak overlap may lead to 
errors in quantitation and biochemical over- 
interpretation, which even so may only be 
drawn from a small fraction of the latent 
information in the spectrum. 

The automatic segment generation approach 
appears to offer a rapid and robust method of 
primary data reduction giving at least com- 
parable results to manual approaches and at 
the same time encapsulating more of the latent 
information in the spectrum. An interesting 
speculation is possible on the relative infor- 
mation loss caused by the reduction of an 
NMR spectrum of for example 64K data points 
to 500 segments or the reduction from 500 
segments down to one or a few principal 
components. If the latter is a bigger com- 
pression, then it may be expected that the use 
of the present automatic methods will be very 
robust. Nevertheless, it is possible that the data 
compression methods described here could 
lead to some information loss, but as long as the 
information which is important for sample 
classification is retained, then the methods are 
adequate. It is worth pointing out that NMR 
spectra of biofluids contain, as well as regions 
with no information content, much redundant 
information in that any one molecule will often 
give rise to several resonances, the areas of 
which are ideally related to the concentration 
of the molecule and the number of nuclei 
giving rise to each peak. In addition, many 
resonances will be further split by spin-spin 
coupling. Thus many of the peak intensities in 
a biofluid NMR spectrum will show high levels 
of correlation. There is a likelihood of retain- 
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ing this information and hence correlation after 
the data compression procedure since the 
signal intensities are preserved. Furthermore, 
additional redundancy may arise in certain 
specific situations where changes in metabolite 
levels are correlated, for example through 
linked biochemical processes. However, one of 
the benefits of using the pattern recognition 
approach is that it is possible to explore, take 
advantage of or remove, if necessary, such 
correlated effects within a spectrum and to 
discover the underlying classifying descriptors. 
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